Abstract

> Existing security solutions for rapidly-
changing, modern clouds still struggle
with too many false-positive alarms.

> The lack of a true, causal link between
loCs makes correlations error-prone.

> We propose an idea for a framework
that automatically and strategically
injects lures and decoys, so that we can
span an attack graph onto which alarms
are projected for reconstruction.

Introduction

> Recent work focuses on correlating
many weak indicators by IP addresses,
alarm types, or time windows.

> Cyber deception reduces false-positives,
but they are not as automatic, nor
adaptive to scale well with modern
cloud environments.

We focus on three aspects:

> Cyber Deception. Use honeypots and
honeytokens for stronger 10Cs.

> Automatic Injection. Strategically and
automatically place tripwires in existing
applications, and react to changes.

> Attack Graphs. Causally connected
deceptive components naturally span
an attack graph onto which incoming
alarms can be projected, which provides
clearer insights into multi-step attacks.

We ask the following research question:
> ,Are automatically injected tripwires

suitable to reconstruct multi-step cyber
attacks in modern cloud environments?”

Conclusion

> We describe a framework and tripwires.

> Future work implements such a system
and evaluates attack reconstruction.

Towards Reconstructing
Multi-Step Cyber Attacks
in Modern Cloud
Environments

with Tripwires

MARIO KAHLHOFER "
MICHAEL HOLZL
ANDREASBERGER ~ dynatrace

TRIPWIRES

Let's reconstruct
multi-step attacks
In modern clouds with
automatic cyber deception
by spanning attack graphs

app-one.company.com

? Lure #1

request.open("GET", "panel.company.com" +
"/assets/?p=../config.json")

@app.route('/assets')
def assets_decoy():
if 1s_modified_request():

return "path /home/ftp/config.json "
"not found on app-two.company.com", 500

&

+ \

4

-
O

®
Q

@

app-two.company.com

panel.company.com

o

o,

®

? Lure #3

$ 1s /home/ftp

aws-s3-bucket-key. json
config.json

E Decoy #2

Attack
Step #3

v

some-bucket.s3.
eu-west-l.aws.com

E Decoy #3

7S\ Alarm
' Lure ‘ System
] notifies
offers :
7' : et up \l,watches
=22 Tripwire Q I[\)/Ieopc:(ljl):e - h Target
creates /
injects into
requiresN :
=: Decoy

A tripwire describes the relation between
lures, decoys, their deployment on some
targets via a deploy module, and its
associated alarm system.

> Connected. Each tripwire comes with a
set of lures and decoys that enforce
strong causal dependencies.

> Managed. Deployment and clean-up of
lures, decoys, and alarm systems is
taken care of accordingly.

> Automatic. Injection points in libraries of
existing applications are detected and
automatically populated with tripwires.

> Strategic. Tripwires are placed to
efficiently cover the environment, and
to discover relevant attack phases.

> Adaptive. Tripwires are re-deployed
when the environment changes.

Tripwire Deploy Modules
Pool
Ce®
1\ samples registers |Z N notifies
Deployment = : Alarm
* Controller z e DM Registry Store
J, enriches 1\ reads
l-[= Attack ¢ reads Attack
Graph Reconstr.

The framework describes the life cycle of
tripwires in cloud environments, from
deployment, alarm and attack graph
storage, to attack reconstruction.

> Deploy Module. Process hooks identify
application libraries and then provide a
DM that can inject tripwires and
associate an alarm system with it.

Tripwire Pool. Holds multiple definitions
of tripwires that could be deployed.

Deployment Controller. Manages the
deployment of tripwires in the cloud.

Attack Graph. Stores the relationships
between deceptive components.

A2 VAR VA V4

Attack Reconstruction. Uses backward
and forward tracking algorithms to
reconstruct multi-step cyber attacks.

